Seite 1 von 6

Tetris

Verfasst: Mo Jun 06, 2005 1:15 pm
von Grent
Endlich ist der Spaß vorbei. ;)

http://www.nichtsooft.at/html/modules.p ... ile=tetris

58.080

Verfasst: Mo Jun 06, 2005 2:32 pm
von Chicken
sack!

Verfasst: Mo Jun 06, 2005 5:01 pm
von bierträgerin
manman...also über ne viertel stund bist scho gsessen oder? :)

Verfasst: Mo Jun 06, 2005 5:07 pm
von Grent
Na sure. Aber nicht so lang insgesamt. Vielleicht 3 Stunden verteilt auf 2 Tage.

Verfasst: Mo Jun 06, 2005 5:54 pm
von bierträgerin
fanatiker ;)

Verfasst: Mo Jun 06, 2005 6:02 pm
von Grent
Najo, ich hab schon länger nach einem guten Tetris gesucht, und bisher nur scheiße gefunden. Aber das ist total simpel und gut. Und außerdem spornen solche :OATZ: -Rekorde natürlich an. ;)

Verfasst: Mo Jun 06, 2005 6:43 pm
von bierträgerin
hehe..."hart am limit" :)

naja also ich steh lieber auf die alte gute version mim gameboy, dass die finger rauchen ;)

vorallem hat ma die voll super musi dazu, dieses orientmäßige :D

Verfasst: Mo Jun 06, 2005 7:01 pm
von Grent
Orient kommt fast hin.
Russisch ists. Tetris kommt auch aus Russland (bzw. Sowjetunion).
Sehr geil eigentlich, dass sich ein sowjetisches Spiel im kapitalistischen Westen so arg durchgesetzt hat. :)

Verfasst: Mo Jun 06, 2005 7:06 pm
von Grent
Is it possible to play forever?

Normally, players lose because:
  • they can no longer keep up with the increasing speed, or
  • a specific implementation of the game with not very responsive control fails to keep up with itself when the pieces' downward velocity exceeds the maximum lateral velocity the player can apply to a piece. (Avid players consider this situation a design flaw.)
But what if the speed did not increase? Would it be possible to play forever? An article has been published that addresses this issue, and it turns out that in theory, you are doomed to lose eventually.

The problem is the S- and Z-shaped pieces. Suppose you got a large sequence of S-shaped pieces of the same orientation. Eventually, many implementations' approximation of gravity (see above) forces the player to leave a hole in a corner.

Suppose you then get a large sequence of identical Z-shaped pieces. Eventually, you'll be forced to leave a hole in the opposite corner, without clearing your previous hole. Now, things go back to the original orientation for a while and so on until the pieces stack up to the top. Since the pieces are distributed randomly, this sequence will eventually occur. So, if you play long enough, and your random number generator is theoretically perfect, you will lose the game. (See also a more detailed discussion of this issue at http://www2.math.uic.edu/~burgiel/Tetris/, along with an implementation written in Java that has been modified to deal only S- and Z-shaped pieces.)

Practically, this does not occur because the pseudorandom number generator in most implementations, which is usually a linear congruential generator, does not deal such a sequence.

Even on an implementation with a theoretically perfect random number generator (for example, based on hashing Brownian motion) and with naïve gravity, a good player can survive over 150 consecutive pieces that are all S-shaped or Z-shaped; the probability at any given time of the next 150 pieces being only S- and Z-shaped pieces equals one in (7/2)150 (approximately one in 4 × 1081). This number has the same order of magnitude as the number of atoms in the known universe.[2] (http://pages.prodigy.net/jhonig/bignum/qauniver.html)

Several of the subproblems of Tetris have been shown to be NP-complete.


(Quelle=wikipedia)



Wahnsinn - der Thread ghört fast schon in Science. ;)

Verfasst: Mo Jun 06, 2005 7:14 pm
von Grent
Music C ist übrigens angeblich von Bach (BWV814).
Ich werd schaun, ob ichs find.